Performance and Microstructural Changes in LSM-Based SOFC Cathodes

Naima Hilli,¹ Celeste E. Cooper,¹ Thomas R. Dietrick,¹ Minjae Jung,² Zhien Liu,² Richard Goettler,² Arthur Heuer,¹ & Mark De Guire¹ ¹⁾ Department of Materials Science and Engineering, Case Western Reserve University ²⁾ LG Fuel Cell Systems

18th Annual Solid Oxide Fuel Cell Project Review Meeting Pittsburgh, PA • 12–14 June 2017

Outline

- $(La_{1-x}Sr_x)_{1-y}MnO_{3\pm\delta}$ (lanthanum strontium manganite, LSM)
 - effect of *Mn excess* (A-site deficiency) on long-term performance
 - Durability testing \Rightarrow **ASR** (area specific resistance) vs. time
 - Cathode *microstructural* changes
 - **TEM** (transmission electron microscopy):
 - Phase composition gradients MnO_x formation
 - **3DR** (3D reconstruction):
 - **TPB** (three-phase boundary) density (total & active)
 - **Densification** at cathode–CCC interface
 - Porosity gradients
- Summary & conclusions

Cell specifications; testing procedures

- Button cells fabricated at LGFCS
 - 8YSZ electrolyte
 NiO / 8YSZ anode
 - Cathodes: LSM / 8YSZ
 - A: (La_{0.85} Sr_{0.15})_{0.90} MnO_{3±δ} (LSM 85-90) **11%** Mn excess
 - B: (La_{0.80} Sr_{0.15})_{0.95} MnO_{3±δ} (LSM 80-95) 5% Mn excess
 - C: (La_{0.80} Sr_{0.15})_{0.98} MnO_{3±δ} (LSM 80-98) 2% Mn excess
- Cell testing
 - Anode: humidified H₂, 50 sccm
 - Cathode: ambient air
 - Accelerated tests: 1000 °C, 0.760 A cm⁻²
 - Conventional tests: 900 °C, 0.380 A cm⁻²
 - I-V and EIS scans every ~24 or ~48 h

A – **B** – **C** comparison: Electrode* ASR (accelerated testing)

ASR (minus electrolyte) vs. t: A, B, C cathodes, accelerated

*) total cell DC ASR, minus estimated ASR for 8YSZ substrate @ nominal thickness & DC conductivity

LSM 80-95 (B) durability testing: reproducibility

Reproducibility of 3D reconstruction data

LSM 80-98 (C) as received, two specimens

Microstructural change after 500 h accelerated testing

LSM 85-90 (A)

as received

LSM 80-95 (B)

LSM 80-98 (C)

- Coarsening of pores & LSM
- Densification of CCC

10 pm

 Highest overall microstructural stability

- Coarsening of pores & LSM
- Densification of CCC

A – **B** – **C** comparison: Phase profiles across cathode (3DR)

All three cathodes developed slight porosity gradients after 500 h of accelerated testing, with lowest porosity at cathode-electrolyte interface

A – **B** – **C** comparison: Phase profiles at cathode/CCC interface (3DR)

A – **B** – **C** comparison: cathode-CCC interface (500 h accel'd testing)

Effect of excess Mn: MnO_x in CCC before and after 500 h accel'd testing

A – **B** – **C** comparison: porosity and TPB density

	LSM 85-90 (A); 11% Mn xs		LSM 80-95 (B); 5% Mn xs			LSM 80-98 (C); 2% Mn xs	
	as rec'd	493h accel	as rec'd	500h accel	624h accel	as rec'd	500h accel
sample volume, μm ³	4350	4525	6300	5096	4550	4100	5012
porosity, volume %	17	18	29	25	25	28	25
pore diameter, μm	0.23	0.42	0.38	0.5	0.46	0.28	0.44
pore surface area, μm^{-1}	26	14	16	13	13	21	14
total TPB, μm^{-2}	17.1	5.9	14.5	14.8	11	21.7	11.1
active TPB, μm^{-2}	10.3	5.1	13.0	12.5	10	20.0	10.2

Vs. LSM 85-90 (A) and 80-98 (C), *LSM 80-95* (B) shows:

- Less pore coarsening and loss of pore area
- Stabler TPB (total and active)

A – B – C comparison: ASR and TPB density

- As Mn excess ↓,
 ASR ↓
 (A → B → C)
- As test *t* **↑**:
 - Active TPB
 - Total ASR 🋧
- Effects diminish as Mn excess ↓ (A → B → C)

 $\frac{\text{reproducibility}}{\text{ASR} [\ \Omega \ \text{cm}^2], 0 \ \text{h}: \pm 0.08 \ \text{(A)}; \ \pm 0.03 \ \text{(B)}}$ active TPB density [μm^{-2}], 0 \ \text{h}: \pm 3.0 \ \text{(C)}

Summary & Conclusions

- During accelerated testing up to 624 h:
 - *LSM 85-90* (A) cathode:
 - Pore coarsening
 • Densification at cathode/CCC interface
 - MnO_x segregation at electrolyte-cathode interface
 - *LSM 80-95* (B) cathode:
 - Stablest microstructure
 - *LSM 80-98* (C) cathode:
 - Lowest initial TPB density, but decreased markedly w/time
 - Lowest ASR, highest power
- Microstructure-performance trend over time:
 - TPB density ↓
 ASR ↑
- These trends are *less pronounced as Mn excess decreases*

Ongoing & Future Work

- Cathode D: composition selected; powder ordered
- Cathode A on same electrolyte as B and C (and (soon) D)
- Continue to explore relationship between TPB and ASR
 - vs. LSM composition Accelerated vs. conventional testing
- Exploring other effects see poster (Gu et al.)
 - Diurnal (24-h) periodicity
 - LSV / EIS checks a source of degradation?

Acknowledgments

- Funding: DoE SECA Core Technology Program (DE-FE0023476)
- Program managers: Shailesh Vora, Patcharin Burke (NETL)
- Mirko Antloga, Craig Virnelson (CWRU)

<u>Disclaimer</u>: This research is based in part upon work supported by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

